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1. INTRODUCTION

In recent years there has been an intense interest in spline functions (see
[4] and references therein). Among the various classes of splines, the
polynomial spline functions have received by far the greatest attention,
primarily because they are the most useful in numerical computations. This,
in turn, is due largely to the fact that the polynomial splines admit a basis of
so-called B-splines which can be computed efficiently and accurately via
certain recursion relations. Recently (see [3]) it was discovered that certain
classes of trigonometric splines also admit of B-spline bases which satisfy
similar recursion relations.

The purpose of this paper is to give a detailed discussion of a third class
of splines, the hyperbolic splines, which also have a basis of B-splines which
can be computed recursively. In addition to their value in certain
applications and as an illustration of the space of L-splines (cf. [4]), the
hyperbolic splines are of special interest in view of the fact (see [5]) that the
only classes of splines which have B-spline bases computable by recursions
are the polynomial, trigonometric, and hyperbolic splines.

Our treatment of hyperbolic splines depends heavily on obtaining explicit
formulae for a related Green's function, for determinants formed from the
hyperbolic functions, and for certain associated hyperbolic divided
differences. These results are developed in Sections 2-4. The hyperbolic B­
splines are introduced in Section 5, and the key recursion relation is
established in Section 6. In the remaining sections of the paper we discuss
the shape of the B-splines, a Peano kernel representation for divided
differences, integrals of the B-splines, a Marsden-type identity, a partition of
unity result, and, finally, give a basis and dual basis for Y.

We turn now to the definition of hyperbolic splines. First we need some
notation. Throughout the paper we shall use the abbreviations

ch(x) = cosh(x), sh(x) = sinh(x).
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HYPERBOLIC SPLINES

Given any nonnegative integer r, we define the sets

Vm = {VI"'" vm } = {ch(x), sh(x),... , ch«2r - 1) x), sh«2r - 1) x)},

m= 2r

Um = {up ..., um } = {l, sh(2x), ch(2x),..., sh(2rx), ch(2rx)},

m = 2r + 1.

Associated with these sets we define the linear space
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,Jr", = span(Vm),

= span(Um),

m=2r,

m = 2r + 1.

This space is the null space of the differential operator

L m = (D 2
- (2r - In ... (D 2

- 32 )(D 2
- I),

= (D 2 _ (2r)2) ... (D 2- 22)D,

m= 2r,

m = 2r + 1.
(1.1 )

Suppose L1={a=xo<x, <· .. <xk + l =b} is a partition of la,b] and
that ,L' = (m I'"'' mk ) is a vector of positive integers with m i ~ m,
i = 1, 2, ... , k. Then we call

:I (elf;;, ;,#'; .1) = {s: there exists So ,. .. , Sk Ed';;, with sex) I (Xi' Xi + I) = Si

i = 0, 1, , k and n j
-

1
Si-l(Xi ) = n j

-
1s;(x;),

j = 1, 2, , m - mi and i = 1, 2,..., k} (1.2)

the space of hyperbolic splines oforder m with knots x I , ... , X k of multiplicities

m1,···,mk·
The space ,Y is a space of L-splines-see 14, Chapter IOJ. By the general

theory (cf. 14, p.430 and Theorem 4.4 J), we know that ,Y is a linear space of
dimension m +K with K = L:7 mi' We begin our detailed examination of
this space of L-splines by giving an explicit formula for the Green's function
associated with the operator L m •

2. THE GREEN'S FUNCTION

The aim of this section is to show that the function

Gm(x; y) = «x - y)~/(m - 1)!)[ sh(x - y) 1m-l (2.1)

IS the Green's function associated with the operator L m and appropriate
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initial conditions. We begin with a lemma which gives a useful expansion for
powers of the hyperbolic sine.

LEMMA 2.1. Given any nonnegative integer r,

[sh(o)]m-I = (2-:'~: ±(-1)" ( 2r -~ 1) sh«2v - 1) 0), m = 2r,
V= 1 r + v

= ~-:~: [(2r~ 1)+ t. (-I)"(r~v)Ch(2VO)l m=2r+1.
(2.2)

Proof The result is obvious for m = I and m = 2. It then follows for
general m by a straightforward inductive argument. I

(2.3)

m=2r,

m = 2r + 1.

As an immediate consequence of this lemma and elementary identities for
the hyperbolic functions, we have the following expansion for the kernel
appearing in (2.1):

[sh(y-x)]m-.

= (-:~: ±(-I)" ( 2r-1 ) [sh«2v- I)y)
2 v=1 r+v-I

X ch«2v - I) x) - ch«2v - I) y) sh«2v - I) x)],

= (-1)2' 1~ (-I)" ( 2r ) [ch(2vy) ch(2vx)
2m-::=,. r + v

(
2r - I ) I

-sh(2vy)sh(2vx)] + r \'

This shows that for each fixed y, the function [sh(y - x)] m- I belongs to the
space cr", .

We can now show that Gm is a Green's function associated with L m •

THEOREM 2.2. For any positive integer m,

LmGm(x;y) = ° for all x *,y (where L moperates on the x-variable),
(2.4 )

D~Gm(x;y)ly=x=l5j.m-.. j=O,I,... ,m-1. (2.5)

Proof It is clear from Lemma 2.1 and the definition of Gm that for each
fixed y, Gm(x;y) is in cr"" and thus that LmGm(x;y)=O for all x*,y. To
prove (2.5), we apply ~ to the definition of Gm to obtain

D~[sh(x - y)]m-l [sh(x - y)]m-j-l [ h( )]j
--"'::":"""''''''':--'-:-':-''--= c x-y + "',

(m - I)! (m - j - 1)1
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where each of the other terms contains a power of sh(x - y). It follows that
for 0 <.j <. m - 2, D~Gm(x;y) Iy=x = O. Now if j = m - I, then

D~-IGm(x;y)!y=x = [ch(x _ y)]m-I + ...,

where each of the other terms includes some power of sh(y - x), and
evaluating at y = x gives the value I. I

The Green's function Gm defined in (2.1) will play an essential role in
defining a B-spline basis for the space of hyperbolic splines. The following
theorem (which follows immediately from general results on L-splines-see,
[4, Theorem 10.8]) shows that it is also the kernel for a useful generalized
Taylor expansion. We use the notation

L~[a, b J= {f: Dm-Ifis absolutely continuous on [a, bl and DmfE LI[a, b J}.

THEOREM 2.3 (Taylor expansion). Let fE L ~[a, b]. Then

f(x) = ufx) +rGm(x;y) Lmf(y) dy,
a

where uf is the unique element in cr", = null space of L msuch that

(2.6)

j= 1,2,...,m.

3. SOME BASIC DETERMINANTS

Our main tool for constructing a B-spline basis for the space of hyperbolic
splines defined in (1.2) will be certain hyperbolic divided differences. Before
defining these divided differences, we need to introduce some determinants
associated with the functions {u I , ..., Um} and {v I , ... , Vm} spanning the space
cr",.

Given any points t I < t2 < ... < tm' we define

ut(t 1) Uitt) Um(tt)

D CI'..·,tm )= UI (t2) U2(t2) Um(t2)

U I ' .. ·, Um

Ut(tm) U2(tm) Um(tm)

We extend the definition of this determinant to the case t l <. t2 <. ... <. tm in
the usual way (cf. [4, p. 21 D. Determinants formed from the VI"'" V m are
defined analogously.
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The following theorem established an important property of these deter­
minants:

THEOREM 3.1. For any integer 1<k,

while

In other words, Um = {udT and Vm = {vdT are Extended Complete
TschebyschejJ systems (cf. [2,4 D.

Proof We give the proof for the u's-the proof for the v's is analogous.
By a well-known theorem from the theory of TschebyschefT systems (see
[2, p. 377D, it suffices to show that the Wronskian determinants formed from
the u's satisfy

for all real x and all k = 1, 2,.... (3.1 )

We accomplish this by induction on k. For k = I we have W(ul)(x) = 1.
Now suppose that (3.1) has been established for k - I-we now show that it
holds for k. If k = 2r is even, we must examine the determinant

o
sh(2x)

2 ch(2x)

ch(2x)

2 sh(2x)

sh(2rx)

(2r) ch(2rx)

o 22r - 1 ch(2x) 22r - 1 sh(2x) ... (2r?r-1 ch(2rx)

Consider the linear system

o
o

o
I

Since the matrix of this system (as well as the r - 1 by r - 1 minor in the
upper left-hand corner) is a VanderMonde matrix, we can uniquely solve this
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system for U 2 , U 4 , ••• , u2r • By Cramer's rule, we see that U 2r > O. Now if we
multiply the second row of W by U 2 /U 2r , the fourth row by U 4 /U 2" ... , and
the (2r - 2)th row by U2r-2/U2r and add these numbers to the last row, we
convert W to a new determinant (with the same value) whose last row is

[0 0 0 (2r/u 2r ) ch(2rx)].

But then by the induction assumption,

The analysis in the case where k = 2r + I is odd proceeds somewhat
differently. In this case we have

o
sh(2x)

2 ch(2x)

ch(2x)..
2 sh(2x)

ch(2rx)

(2r) sh(2rx)

In this case we combine the rows 2,4,... , 2r and then the rows 3,5,... , 2r + I
to reduce W to the form

W = 0 22r
-

2 sh(2x) 22r
-

2 ch(2x) ...

ch(2x)

2 sh(2x)

o

sh(2x)

2 ch(2x)o
I
I
I
I
I
I
I
I

-------------------~--------

o 0 0 I ch(2rx) sh(2rx)
I

o I sh(2rx) ch(2rx)o

Expanding by the Laplace expansion and using the inductive hypothesis
together with the fact that the 2 X 2 determinant in the corner is

I
ch(2rx)
sh(2rx)

sh(2rx) I= I,
ch(2rx)

show that W> O. This completes the proof for the u's. The proof for the v's
is nearly the same. I

Theorem 3.1 shows that the determinants formed from the u's and from

64013R/2·4
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the v's are always positive. Our next result gives explicit formulae for these
determinants in the case the t's are distinct.

THEOREM 3.2. For any integer r> °and any t l < t2 < ... < tm,

m=2r,

(3.2)

D (t l , ,
tm ) = 4r2 Il sh(tj - ti),

Up , um I <;;i<j<;;m

m=2r,

(3.3)

m = 2r + 1,

(3.4)

m = 2r + 1.

(3.5)

Proof The proof proceeds by induction. The values of all determinants
are easily computed in the cases of m = 1 and 2. Suppose now that the
results are valid for determinants of size m - 1. We now establish them for
determinants of size m. We begin with the determinant in (3.2). First, we
note that by using (3.4) for m - 1, we have

D(x) = D (tl, ... ,tm_I,X) = sh(2rx). D (t p..., tm_ 1 ) + ~l aiui(x)
uv,,,,um uI"",Um_1 i=1

m-I

= sh(2rx)4(r-I)2 Il sh(tj-ti)+ I: aiui(x)
I<;;i<j<;;m-I i=1

for some coefficients a p..., am-I' Clearly, D(ti) = 0, i = 1,2,..., m - 1. On
the other hand, using Lemma 3.3 below and a standard hyperbolic identity,
we see that

m-I sh(2rx) m-I

C(x) = ch(x + t l + ... + tm_l) Il sh(x - li) = 2m 1 + L biu;(x)
;=1 ;=1

(where b1"'" bm _ 1 are certain coefficients) also vanishes at the same points.
Now since by Theorem 3.1 the set {udf forms an Extended Tschebyscheff



HYPERBOLIC SPLINES 151

system, we conclude that D(x) must be a constant multiple of C(x), and
comparing the coefficients of sh(2rx), we conclude that

m-I

x n sh(tj - ti) n sh(x - tJ
I<;i<j<;m-I i= I

Evaluating this· expression at x = tm , we obtain (3.2).
The proofs of the other determinant formulae are similar. To get (3.3), we

note that by (3.5) for m - 1~ we have

D(x)=D (t l
, ...,tm - I,X)=sh«2r_1)X)4(r-t)lCh(t

l
+ ... +lm_l)

VI"'" vm

x
m-In sh(tj - ti) + .L aivi(x).

I<;i<j<;m-I i=1

We compare this with the function

m-l
C(x) = n sh(x - t;)

i=1

sh«2r- l)x) m~l
= m-2 ch(t 1 + .,. + tm-t) + ~ biv;(x).

2 i= I

Clearly both D(x) and C(x) vanish at the same set of points t l , ... , lm_1 and
since {vd~ is an Extended Tschebyscheff system by Theorem 3.1, we
conclude that D(x) is a constant multiple of C(x). Comparing coefficients of
sh((2r - 1) x), we conclude that

m-I

D(x)=2m- 24(r-I)1 n sh(tj-ti) n sh(x-t;),
I<;i<j<;m-l i= I

and evaluating this expression at x = tm yields (3.3).
To establish (3.4), we note that by (3.2) for m - 1, we have

x
m-In sh(tj - ti) + I aiu;(x)

I <; i <j <; m - 1 i = I
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while

m-I ch(t + ... + t ) m:-I
C(x)= n sh(x-t,.)=ch(2rx) I 2m- 2 m-I + I b;u;(x).

i=1 i= I

This implies that
m-I

D(x) = 2 . 2m-24rLr n sh(tj - t i ) n sh(x - t;),
I(;<j(m-I i=l

and evaluating at x = tm yields (3.4).
Finally, to establish (3.5), we use (3.3) for m - 1 to obtain

D(x)=D (tl, ...,tm-I,X)=ch(mX)4rLr n sh(tj-t;)
V1"'" vm l(;<j(m-l

while
m-I

C(x) = ch(x + t l + ... + tm_ l ) n sh(x - t j )

i= 1

This implies

m-I
X n sh(tj - ti ) n sh(x - t;),

l(;<j(m-l i= 1

and (3.5) follows upon setting x = tm' The theorem is proved. I
The following lemma was used in the proof of Theorem 3.2:

LEMMA 3.3. For any t 1 < '" < tm - 1 ,

mn-ISh(X-t,.)= sh«m-l)K-t1- ... -tm_ l ) \~2 ()
2m - 2 + :- a;v; x ,

i= I /=1

m=2r,

(3.6)
_ ch«m-l)x-tj-· .. -tm _1) ,~2 b ()
- 2m - 2 +..... ;u i X ,

i I

m = 2r + 1,
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where {ad;n-2 and {bd;n-2 are constants which depend on m and on the

tl''''' tm _ l •

Proof We repeatedly apply basic hyperbolic identities for products of sh
and ch. I

We conclude this section with a result concerning a set of functions which
we shalJ need later.

THEOREM 3.4. Let m = 2r. Then the set offunctions

Wm = {WI"'" wm } = {ch(2x), sh(2x),..., ch(2rx), sh(2rx)} (3.7)

is an Extended Complete TschebyschefJ system on IR.

Proof As in the proof of Theorem 3.1, it suffices to check that each of
the Wronskians W(w l , ••• , wk)(x) > 0 for k = 1,2,..., m. Clearly
W(wl)(x) = ch(2x) > 0 while W(w 1 ;w2)(x) = 2. We now proceed by
induction. If k is odd, say k = 2n + I, then

ch(2x)

2 sh(2x)
W(w( ,..., wk)(x) =

sh(2x)

2 ch(2x)

ch((2n + 2) x)

(2n + 2) sh((2n + 2) x)

22n ch(2x) 22n sh(2x) ... (2n + 2)2n ch((2n + 2)x)

As in the proof of Theorem 3.1, we can now combine the odd rows to reduce
W to a determinant with alJ zeros in the last row except for the element in
the last column. Expanding by this row, we obtain

where A is a positive constant.
The case where k = 2n is even is similar. Here we must add combinations

of the rows 2,4,..., 2n together and combinations of the rows I, 3,..., 2n - 1
together to reduce W to the form

W(W I , ... , Wk _ 2)(X) I
I- - - - - - - - -1- - - - - - - - -

o 0 I ch(2nx) sh(2nx)
Io 0 I sh(2nx) ch(2nx)

with a positive constant B, (cf. the proof of Theorem 3.1). Then the result
folJows. I
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4. HYPERBOLIC DIVIDED DIFFERENCES

In this section we define hyperbolic divided differences and establish
several useful properties of them. Given any points t, ~ t 2~ ... ~ t m +, and
any sufficiently differentiable function f, we define the mth order hyperbolic
divided difference off by

(4.1 )

m=2r.

This definition is well defined since by Theorem 3.1 the denominators in
(4.1) can never be zero. The factor 4' in the definition is a normalization
factor.

The hyperbolic divided difference exhibits many of the same properties
that the ordinary polynomial divided difference has (cf. [4, Sect. 2.7]). For
example, if

then

d Ii

[t" ..., tm+ 1lf= I I a,JY-1(r;),
'=1 j=l

and thus the divided difference is a linear functional. It follows trivialy from
the definition that it annihilates eP:n, i.e.,

for all f E eP:n .

An important property of the ordinary divided differences is the fact that
they are continuous functions of the points t I ~ ••• ~ tm+" i.e.,

as e~ 0

whenever tl .•~ ti' i = 1,2,..., m + 1 (cf. [4, Theorem 2.53 D. Since the hyper­
bolic divided differences are also defined by the ratio of two determinants, a
similar proof serves to establish their continuity with respect to the location
of the t's.

Our next theorem gives an explicit formula for the hyperbolic divided
difference of a function in the case of distinct t's (cf. [4, Theorems 2.50 and
10.44] for the cases of ordinary and trigonometric divided differences).
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THEOREM 4.1. For any t, < t2 < ... < tm+ p

155

(4.2)

Proof We simply expand the determinant in the numerator of the
definition of the divided difference using Laplace's expansion on the last
column, and then insert the exact values of the resulting determinants from
Theorem 3.2. I

One of the important properties of the ordinary divided differences which
we do not have in the case of hyperbolic divided differences is the Leibniz'
rule (cf. [4, Theorem 2.52]). The fOllowing theorem is a useful substitute:

THEOREM 4.2. Suppose t, ~;;;.tz ~ ... ~ tm+ 1 with t, *' tm + I' Then for any
function f,

[t p ... , tm+,] sh(x- y)f(y)

-sh(x - t,)[t"..., tmJf - sh(tm+' - x)[tz ,... , tm+, Jf
sh(tm+' - t,)

(4.3)

Here the divided difference is taken with respect to the y variable and x is
any fixed real number. Similarly,

[t" ..., tm+,] ch(x- y)f(y)

-ch(x - t 1)[tl''''' tm]f+ ch(tm + 1 - x)[tz,..., t m + Ilf

sh(tm+' - t,)

Proof Using Theorem 4.1, we see that if t, < tz < ... < tm+" then

m+' [ Im+, J[t, ,... , tm+ ,] sh(x - y )f(y) = jJ;., fltj ) sh(x - tj ) ;J;.l sh(tj - t;) ,

i*j

(4.4)

-sh(x - t 1)[t p ••• , tmJf= - j~' [J(tj ) sh(x - t,)1Dsh(tj - t i ) J'
i*j

and

-sh(tm+' - x)[tz,"" tm+, Jf= - ~ZI [f(tj ) sh(tm+, - X)/'D' sh(tj - t;) J.
i*j
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To show the equality of the two sides of (4.3), it suffices to compare the
coefficients of f(t), ... ,f(tm+I)' It is easy to see that the coefficients of f(t,)
and !(tm+) agree. But they also agree for all I <j <m + I since using the
identity

shea) sh(b) = Hch(a + b) - ch(a - b»,

we have

sh(x - tj ) sh(tm+) - t l ) = -sh(x - t l ) sh(tj - tm+I) - sh(tm+ 1- x) sh(tj - t l ).

This shows that (4.3) holds for distinct t's. The fact that it is also valid for
general t) ~ t2 ~ ... ~ tm+) now follows by the continuity of the divided dif­
ferences.

The proof of (4.4) is similar. Suppose t 1 < t2 < ... < tm+ ). Substituting in
(4.4) from Theorem 4.1, we can again compare coefficients of
!(t),...,f(tm+ I)' The fact that they agree for 1 <j <m + I follows in this
case from the fact that

which in turn is easily checked using the simple identity

ch(a) sh(b) = Hsh(a + b) - shea - b».

The result for arbitrary t's follows by the continuity of the divided
differences. I

5. HYPERBOLIC B-SPLINES

Given a sequence of numbers

'" ~Y-I ~Yo ~YI ~Yz ~ ...

and integers i and m >0, we define

=0,

if Yi <Yi+m'

otherwise.
(5.1)

We call Qr the mth order hyperbolic B-spline associated with the knots

YP''''Yi+m'
For m = 1 and Yi <Yi + 1 the hyperbolic B-spline is particularly simple; it

is given by

=0,

Yj~X<Yi+l'

all other x
(5.2)
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We can also give explicit expressions for Q~ in the cases when either Yi or
Yi+m is an m-tuple knot.

THEOREM 5.1. Suppose Yi <Yi+l = ... =Yi+m' Then

=0,

Similarly, ifYi='" =Yi+m-l <Yi+m, then

all other x.
(5.3 )

=0,

Yi~X<Yi+m
(5.4)

all other x.

Proof These expressions follow by induction on m. The case m = 1 is
covered by (5.2). Now to get (5.3), for example, we apply (4.3) with
f(y) = [sh(x - Y)+ ]m-2 which for Yi ~ X <Yi+m yields

[ . ]( h( _ ))m-l _ -sh(x - Y;)[Yi'''''Yi+m_l](sh(x - y))m-2
Y"''''Yi+m S X Y - h( _) ,

S Yi+m Yi

and the result for m follows from the result for m - 1. The proof of (5.4) is
similar. I

Theorem 5.2· describes the structure of Q~ for a general knot sequence,
and identifies it as a hyperbolic spline.

THEOREM 5.2. Let Yi <Yi+m and suppose that

I, Id
~- -~-

Yi""'Yi+m = r p ••• , r 1 < ... < rd,..·, rd'

Then

d I}

Q~(X)=L L ajkD~-I[sh(x-rj)+]m-l
j=l k=l

for some coefficients {ajk }. Moreover,

(5.5)

k = 0, 1,... , m -lj - 1, j = 1,2,..., d. (5.6)

Thus, Q~ is a hyperbolic spline of order m with knots at the Yi""'Yi+m'

Proof Expansion (5.5) for Q~ follows directly from the expansion for
the divided difference. The rest is elementary. I
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The B-splines associated with knot sequences Yi ~ Yi+ I ~ •• , ~Yi+m where
some of the y's are equal to others can be regarded as arising as limits of B­
splines associated with distinct knots. In particular, it is easy to show from
the continuity of divided differences that:

if Q~v(x) is the B -spline associated with Yl' ~ Yi'+ I ~ ... ~ Y l'+m

and

Qr(x) is the B-spline associated with Yi~Yi+l ~ ... ~Yi+m'

then

j = i, i + 1,... , i +m as v -+ 00

implies

for all x E IR V7,
where

J7 = {YJ:YJ is a knot of Qr of multiplicity m - k or more}. (5.7)

(For the details of the proof in the polynomial spline case, see [4,
Theorem 4.26]).

One of the most important properties of polynomial B-splines is the fact
that they can be computed by a convenient recurrence relation. The
following theorem gives the analog for hyperbolic splines:

THEOREM 5.3. Let m ~ 2 and suppose that Yi <Yi+m' Then for all
xE IR,

(5.8)

Proof For Yi <Yi+ 1 = ... =Yi+m or Yi = '" =Yi+m-I <Yi+m' the result
follows directly from Theorem 5.1. Thus we may assume that Yi+l <Yi+m
and Yi <Yi+m-l' Now since

if we apply (-l)m[Yi""'Yi+m] to both sides and use identity (4.3), we obtain
(5.8). •

We give a number of applications of this result in the following sections.
The next theorem gives a similar recursion for the derivative of a hyperbolic
B-spline.
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THEOREM 5.4. Let m ~ 2 and suppose that Yi <Yi+m' Then for all
xE IR,

DQr(x) = (m _ 1) ch(x - Yi) Qr-1(x) - ch(Yi+m - x) Qr+-ll(X). (5.9)
sh(Yi+m - yJ

Proof The assertion follows immediately upon application of
(-I)m[Yp"',Yi+m] to both sides of the identity

Dxlsh(x - Y)+ ]m-I = (m - 1) ch(x - y)[sh(x _ Y)+ ]m-2

along with the use of identity (4.4). I

6. MORE ON HYPERBOLIC B-SPLINES

With recurrence relation (5.8) at our disposal, we can now give a very
precise result about the shape of Qr.

THEOREM 6.1. Let m > I and suppose Yi <Yi +m' Then

Qr(x) > 0

Qr(x) = 0

for Yi<X<Yi+m'

for x <Yi and Yi+m < X.

(6.1 )

(6.2)

At the endpoints of the interval (Yi' Yi+m) we have

and

where

(_l)k+m-a l D~ Qr(Yi) = 0,

> 0,

(_l)m-/3i+m D~ Qr(Yi+m) = 0,

> 0,

k = 0,1,..., m - 1 - ai'

k = m - ap ... , m - 1;

k=O,I,... ,m-l-fJi+m'

k = m - fJi+m,'''' m - 1;

(6.3)

(6.4)

ai = max{j: Yi = ... = Yi+j- d,
fJi+m = max{j:Yt+m = ... = Yi+m-j+ I}'

The quantity at tells how many of the points Yt ~ ... ~Yt+m are equal to Yi'
while fJi+m tells how many of them are equal to Yt+m'

Proof Property (6.1) follows by induction, while (6.2) comes directly
from the definition. The sign properties of the derivatives (6.3}-(6.4) are also
established by induction. I
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Our next theorem shows that the hyperbolic B-spline is the kernel in a
Peano representation of hyperbolic divided differences.

THEOREM 6.2. For any fE LT[YpY;+m]'

f
Yi +m Q~(Y) Lmf(Y) dy

[Y;'''',Y;+m]f= ( _ )' .
Yi mi.

(6.5)

all Y E IK \l~

Proof If we apply the divided difference to the Taylor expansion given
in (2.6), we obtain

f
Yi +m Q~(Y) Lmf(y) dy

[Y;'''',Y;+m]f= ( _ 1)' '
Yi m.

where

Now since for all x and Y

applying [Y;,... ,Y;+m]x, we conclude that

Q~(Y) - Q~(Y) = 0,

(cf. (5.7)), and (6.5) follows. I

The only difference between Q~(Y) and Q~(Y) is that the first is left
continuous while the second is right continuous. This makes no difference
except at an m-tuple knot.

Theorem 6.2 can be used to compute the integrals of the B-splines. We
have

THEOREM 6.3. Let m ~ 1 and Y; ~Y;+I ~ ... ~Yi+m be given. Then

fYi+m [ 2r' ] 2
Yi Q~(x) dx = (m - 1)1 (-1)' (2r)1 [Yi'''''Yi+m] 1,

= (m - 1)! (-1)' [2r~!]2 [Y;,...,Y;+m] x,

Proof It is easily checked that

m= 2r,

(6.6)

m = 2r + 1.

L 1 = (-1)' [(2r)l] 2
m 2r! if m = 2r
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if m = 2r + 1.

Substituting the function f = 1 (if m is even) or f = x (if m is odd) in (6.5)
leads immediately to (6.6). I

We now turn to some properties of the normalized hyperbolic B-splines
defined by

Nf(x) = sh(Yi+m - y;) Qf(x). (6.7)

For m = 1, the normalized B-spline associated with the knots Yi <Yi+ 1 is
given by

N!(x) = 1,

=0, all other x.
(6.8)

We can give an expansion of the kernel [sh(y - x)] m -I in terms of the
normalized B-splines.

THEOREM 6.4. Let I ~ rand Y1 <Yr+ I' Then for any Y E IR,

where

r

[sh(y-x)]m-I = 2: ¢i,m(Y) Nf(x),
i=I+I-m

all Y/~X<Yr+l' (6.9)

m-I

¢i,m(Y) = n sh(y - Yi+v)'
v=1

Proof We proceed by induction. For m = 1 the result follows from (6.8)
and asserts that

r

1 == 2: N!(x).
i=l+ I-m

Now assuming the identity has been established for m - 1, we have

2: ¢i.m(Y) Nf(x)
i=I+I-m

r

2: ¢i.m(y)[sh(x - y;) Qf-I(X) + sh(Yi+m - x) Q;:-II(X)]
i=I+I-m
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r

.L Qr-1(x)[sh(x - yJ ~1,m(Y) + Sh(YI+m_l - XHI-l,m(Y)]
i=l+l-m

r

L Qr-1(xHi,m_l(y)[sh(x - yJ sh(y - Yi+m-l)
i=l+l-m

+ Sh(Yi+m_l - X) sh(y - Yi)]'

Using elementary identities on the hyperbolic functions, we see that the
quantity in the square brackets is [ ]=sh(y-x)sh(Yi+m_'-Yi)' and we
get

r r

.L ~i,m(y)Nr(x) = sh(y -x) .L ~1,m_l(y)Nr-\x)
i=l+l-m i=l+l-m

= sh(y -x)[sh(y _x)]m-2 = [sh(y _x)]m-l. I

7. A PARTITION OF UNITY

One of the most interesting facts about polynomial B-splines is that they
can be used to give a partition of unity. The following theorem is the hyper­
bolic analog of this result. Note, however, that we only assert the existence
of such a partition for the case of m odd. Indeed, when m is even, the space
of hyperbolic splines does not even contain the function I.

THEOREM 7.1. Let m = 2r + 1. Then for all Y/ ~ X <Yr ,

r

1 = .L arNr(x),
l+l-m

where

and a~ is the constant term in the expansion (ef Lemma 3.3)

m-l m

~i,m(Y) = n sh(y - Yi+v) = L aJuiY).
v=l j=l

Proof We apply the operator

(7.1 )

(7.2)



HYPERBOLIC SPLINES 163

to both sides of the Marsden identity (6.9). Since M annihilates the functions
ch(2y), sh(2y),..., ch(2ry), sh(2ry), it follows that

(
2r- 1 )/M[sh(y-x)]m-I =M(-I), r 22r

-
1

while

Identity (7.1) follows.
It remains to show that ar > 0, or equivalently, that (-IY a~ > 0. The

coefficients of ~i.m(Y) must satisfy the system of equations

~i.m(Yi+ I) UI(Yi+ I) Um(Yi+ I) ai

°I

~i.m(Yi+m-I) U1(Yi+m-l) Um(Yi+m-l) a~_1 °
~i.m(Yi+m) U1(Yi+m) Um(Yi+m) ai Am

where A = n~:/ sh(Yi+m - Yi+J >0. But then Cramer's rule shows that

ail =AD (Yi+I""'Yi+m-l) =A(-I)' D (Yi+I'''''Yi+m-1 ) >0,
U2,... , Um W ..... , Wm _ 1

where the last inequality follows from Theorem 3.4. (Note that
{u 2, U3 ' ... , um} = {w2, WI'"'' wm-1' wm- 2}, which accounts for the (-I)' in
the above string of equalities.) I

Theorem 7.1 is not quite of the same form as its analog for polynomial
splines where the B-splines themselves form a partition of unity without the
factors ar. It is possible to derive explicit formulae for the ar, at least for
small m.

EXAMPLE 7.2. The hyperbolic B-splines of order 1 and 3 satisfy the
relations

r

1 = L NJ(x),
i=/+ I-m

r

1= L Ch(Yi+2-Yi+l)N~(x).
i=/+I-m

(7.3 )

(7.4)
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Proof. Partition (7.3) is trivial in veiw of the definition of the Ni's.
Partition (7.4) follows from Theorem 7.1 and the fact that

?i,3(Y) = sh(y-Yi+ I) sh(Y-Yi+2) = ch(2y - Yi+ I - Yi+~ - ch(Yi+2 - Yi+ I)

= ch(2y) Ch(Yi+ ( +Yi+2) - sh(2y) Sh(Yi+ 1 +Yi+2) - ch(Yi+2 - Yi+ J
2

I

Identity (6.9) can be used to give a variety of identities involving the
normalized B-splines. For example, we have the following somewhat curious
result:

THEOREM 7.3. For any m and all Yt+m::;;; x ::;;;Yr'

r

1 = L ch«m-l)x-Yt+1 - ... -Yi+m-I)Nr(x).
i=(

Proof. This result can be established by applying an appropriate
operator to both sides of (6.9). Or, it can be established by induction. It is
trivially true for m = 1. Now using recurrence relation (5.8), we note that

(with m1 = m - I and pr = Yi + I + ... +Yi +m- I)'

= L ch(mlx - prHQr- lex) sh(x - Yi) + sh(Yi+m - x) Qr+-/(x)]

= L Qr-l(x)[ch(m1x - pr) sh(x - Yi)

+ch(m1x - pr-I) sh(Yi+m_ I - x)].

But

[ch(m[x - pr) sh(x - Yi) + ch(m{x - pr-I) sh(Yi+m_1 - x)]

= ch(m2x - pr- I) sh(Yi+m_ 1-Yi)'

where m2= m - 2 and pr- I = Yi+ 1 + ... +Yi+m-2' It follows that

by the inductive hypothesis. I
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8. A BASIS AND A DUAL BASIS
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We are now in a position to describe a basis of B-splines for the space of
hyperbolic splines Y~;1; A). Following the construction for polynomial
splines (cf. [4 j), suppose Yl ~Y2 ~ ... ~Y2m+K is a set of points with

and

and b ~Ym+K+ I ~ ... ~Y2m+K

Let

mj rnA

Ym+l ~ ... ~Ym+K = X~l ,..., X;;::::Xk'

B;(x) = Nf(x), i = 1,2,..., m +K,.. (8.1 )

where the N's are the normalized B-splines defined in (6.7). (In the case
where b =Ym+K+l = ... =Y2m+K' we modify Bm+K slightly by taking
Bm+K(b) =Bm+K(b-».

THEOREM 8.1. The functions lBi(x)}~+K form a basis for
Y(~;1;A).

Proof It is clear from our earlier results on B-splines that each B; is an
element of Y. (The special definition of B m+K at b was necessary to insure
this-cf. the discussion in [4, p. 117].) The fact that these functions are
linearly independent follows immediately from Theorem 8.2 below, and since
Y has dimension m +K, the assertion is proved. I

In order to establish the linear independence of the hyperbolic B-splines,
we now construct a dual basis of linear functionals {A;}~+K. Again, we
follow the construction in the polynomial spline case (cf. [4, pp. 145 and
following]). For each j = 1,2,..., m +K, let Gix) be the transition function
defined in the proof of [4, Theorem 4.411, and let ¢jm(Y) be the function
defined in Theorem 8.1 above. Then for any sufficiently smooth function f,
we define

j = 1, 2,..., m + K, (8.2)

where L m is the differential operator defined in (1.1) and where

640/38/25
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THEOREM 8.2. The linear functionals {Ad;,,+K form a dual basis for
{Bd;"+K, i.e.,

AjB; = hlj = 1,

=0,

if i =j,

otherwise,
(8.3)

for all 1~ i,j~ m +K.

Proof By the Peano representation for divided differences given in (6.5),
we have

all 1~ i, j ~ m + K. Now if i >j, this is zero since IJfj E £;" and hence is
annihilated by the divided difference. If i <j, then we again get zero since 1Jf;
agrees with the function 0 on the points Yp"" Yi +m' Finally, if i = j, we note
that IJfj agrees with sh(y - y;) ~i.m(Y) on Yi'''''Yi+m' and so

i+m+ 1

A;Bi = [Yi'''''Yi+m] f1 sh(y - Yl')'
lI::::i

which is easily shown by induction to have the value 1. Indeed, for m = 1 we
have [Yi'Yi+l]sh(Y-Yi)=1. Now assuming the result for m-l, using
recursion formula (4.3), we have

i+m-l

[Yi""'Yi+mJ sh(y - y;) f1 sh(y - yJ
v=i+ 1

;+m-l

= [Yi+ !""'Yi+m] T1 sh(y - Yl,) = 1. I
l'=i+ I

REFERENCES

I. C. DE BOOR, On calculating with B-splines, J. Approx. Theory 6 (1972), 50--62.
2. S. KARLIN AND W. STUDDEN, "Tchebycheff Systems: With Applications in Analysis and

Statistics," Interscience, New York, 1966.
3. T. LVCHE AND R. WINTHER, A stable recurrence relation for trigonometric B-splines. J.

Approx. Theory 2S (1979), 266-279.
4. L. L. SCHUMAKER. "Spline Functions: Basic Theory," Wiley-Interscience, New York,

1981.
5. L. L. SCHUMAKER, "On Recurrences for Generalized B-Splines," J. Approx. Theory 36

(1982), 16-31.


